Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Multi-spectral satellite images that remotely sense the Earth's surface at regular intervals are often contaminated due to occlusion by clouds. Remote sensing imagery captured via satellites, drones, and aircraft has successfully influenced a wide range of fields such as monitoring vegetation health, tracking droughts, and weather forecasting, among others. Researchers studying the Earth's surface are often hindered while gathering reliable observations due to contaminated reflectance values that are sensitive to thin, thick, and cirrus clouds, as well as their shadows. In this study, we propose a deep learning network architecture, CloudNet, to alleviate cloud-occluded remote sensing imagery captured by Landsat-8 satellite for both visible and non-visible spectral bands. We propose a deep neural network model trained on a distributed storage cluster that leverages historical trends within Landsat-8 imagery while complementing this analysis with high-resolution Sentinel-2 imagery. Our empirical benchmarks profile the efficiency of the CloudNet model with a range of cloud-occluded pixels in the input image. We further compare our CloudNet's performance with state-of-the-art deep learning approaches such as SpAGAN and Resnet. We propose a novel method, dynamic hierarchical transfer learning, to reduce computational resource requirements while training the model to achieve the desired accuracy. Our model regenerates features of cloudy images with a high PSNR accuracy of 34.28 dB.more » « less
-
Measuring importance of nodes in a graph is one of the key aspects in graph analysis. Betweenness centrality (BC) measures the amount of influence that a node has over the flow of information in a graph. However, the computation complexity of calculating BC is extremely high with large-scale graphs. This is especially true when analyzing the road networks with millions of nodes and edges. In this study, we propose a deep learning architecture RoadCaps to estimate BC with sub-second latencies. RoadCaps aggregates features from neighbor nodes using Graph Convolutional Networks and estimates the node level BC by mapping low-level concept to high-level information using Capsule Networks. Our empirical benchmarks demonstrates that RoadCaps outperforms base models such as GCN and GCNFCL in both accuracy and robustness. On average, RoadCaps generates a node’s BC value in 7.5 milliseconds.more » « less
An official website of the United States government
